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Method of intervals for the study of diffusion-limited annihilation, A+A—0
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We introduce a method of intervals for the analysis of diffusion-limited annihilaiehA— 0, on the line.
The method leads to manageable diffusion equations whose interpretation is intuitively clear. As an example,
we treat the following casega) annihilation in the infinite line and in infinit&iscrete chains;(b) annihilation
with input of single particles, adjacent particle pairs, and particle pairs separated by a given digtance;
annihilation,A+A—0, along with the birth reactioA— 3A, on finite rings, with and without diffusion.
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[. INTRODUCTION adjacent particle pairs/(~0) are examined. We also discuss
input at a rate proportional to a function of the global con-

Diffusion-limited reactions display a wide range of be- centration of particles. In Sec. IV, we present our results for
havior characteristic of nonequilibrium dynamics, such asDBARW and DBAP. We conclude in Sec. V with a discus-
self-organized criticality, pattern formation, and dynamicsion and open directions of research suggested by the new
phase transitions. However, the exact description of this bemethod of intervals.
havior can only be determined for the simplest reaction
schemes. Single-species annihilatiént A—0, and coagu- Il. THE METHOD OF ODD /EVEN INTERVALS
lation, A+A—A, are among the few examples of exactly , ,
solvable diffusion-limited reactions. The method of empty W& now adapt the method of empty intervals, conceived

intervals has provided many exact results concerniné)rigina"y for the an.alysis of diffusion-li.m_iteq coalescence,
diffusion-limited coagulatioil—5]. Its advantage lies in the A+tA—A, to reactions such as annihilatio®+A—0,
fact that it leads to simple diffusion equations that are easy t¥/here the paritythe number of particles modulg % con-
solve, and whose interpretation is intuitively obvious. WeServed. Consider the procedst A—0, taking place in a
develop a similar method of intervals for the study ofOne-dimensional lattice. The particles hop randomly to the
diffusion-limited annihilation reactions. nearest site on their right or left, at equal r&teand annihi-
Diffusion-limited annihilation has been studied in a vari- laté immediately upon encounter. L&(t) be the probabil-
ety of forms. For the basic annihilation process, the exacty that an arbitrary segment af consecutive sites contains
time-dependent concentration of particles has been detef even number of particles, at time(We assume, for the
mined for various initial distributions on the infinite one- Moment, that the system is infinite and homogengdusite
dimensional lattice and the continuous real lj6e-16]. The  can be either empty or occupied by a single particle, so the
inclusion of particle input in the reaction scheme allows for aProbability that a site is occupied, i.e., the particle density, is
nontrivial steady-state concentration. Both input of adjacent ()=1-G,(1) 1)
particle pairs[17,18 and single-particle inpuf17,19,2Q p nHe
have been studied. A nontrivial steady state may also occur gjnce the reactiofh+A—0 conserves parity, the only
wher_l a blrth reac_t|on is included. Ann|h|Iat|_on W|th thg SYM- way thatG, might change is when particles at the edge of
metric birth reactionA—3A, has been studied for its impli- *the segment hop outside, or when particles just outside of the
cations to interacting particle systems and universality theogegment hop inside. To describe these events, we require
ries [21-28. Sudbury[23] referred to this reaction as the g (1), which is the probability that an segment containing
double branching annihilating random walPBARW). 45 even number of particles is followed by the presence of a

Without diffusion, the process is known as the doublepayticle at the 9+ 1)th site. This can be expressed in terms
branching annihilating proces©BAP). We show how a ¢ G, (Fig. 1):

method of intervals, previously introduced in the literature

[24,29-32, may be used to model all of the above reactions. 2F (1) =(1-G1)+(Gh—Gpt1). (2
This powerful yet simple method yields insights that extend
beyond the known resul{83]. n sites
The rest of this paper is organized as follows. In Sec. Il, Fn ———1e } e ® 1-Gy

we introduce the method of intervals, as adapted for the an- G et {—°
nihilation processA+A—0, and reproduce its well-known ——— %1 ——— g

L - . . . F ——ie n
kinetics. Section Il deals with various cases of input. Input n
of particle pairs separated by a distarycis considered, and 2F + G = 1-G; + G,

the limiting cases of input of single particley-G) and

FIG. 1. Computation oF ,(t): Empty(solid) rectangles symbol-
ize n segments with an evefodd number of particles. Empty
*Email address: benavraham@clarkson.edu (solid) circles represent emptipccupied sites.
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Likewise, H(t), the probability that am segment contain- wherer=2TI't, ,8=4p§/(1—2p0), andl () is the modified
ing anodd number of particles is followed by a particle at Bessel function of orden [35]. In particular, the probability

the (n+1)th site, is

2Hp(1)=(1-G1)—(Gr—Gn11). )

The evolution equation foG,, is now readily obtained:

Jd
—Gp()=2'(Fy_1—

ot Ho1+H,—Fp).

(4)

The term proportional td=,_; on the right-hand side ex-
presses the event that a particle at sitgimps out of the
segment, leaving an even number of particles in the remai
ing n—1 sites(and hence in then segment H,_, corre-
sponds to the same case, but when there are initially an ev
number of particles in tha segmenfthat is, an odd number
in the (h—1) segment H,, andF,, pertain to a particle just
outside of then segment, at sita+ 1, jumping in. The factor
of 2 accounts for events taking place laith edges of the
segment, at equal rate. Using E¢®). and (3), this becomes

17
2 Cn(0=2I(Gp—1=2G+ Gp). (5

The case on=1 requires a special equation, sinGg is
undefined. Taking into account all the ways; might
change, one finds

%Gl(t)=21"(1—2(31+(32)- (6)

Thus, Eq.(5) may be understood to be valid for alk=1,
provided that one uses the boundary condition

Go(t)=1. (7)
Additionally, since theG,, are probabilities we have
0<G,(1)<1. (8

The initial distribution of particles determines the re-
quired initial condition,G,,(0). Forexample, suppose that at

the start of the process each site is occupied randomly and

independently of other sites, with probabilipy. Then

Gn(0)=3+3(1—2po)". 9

Equation(5) may be solved by standard techniques, for
example by Laplace-transforming with respect to time, fit-
ting an exponential solution to the resulting difference equa
tion, and finally inverting the Laplace-transformed solution
[34]. With the boundary condition&) and(8), and the natu-
ral initial condition(9), one obtains

Go(7)=4+3(1~2p0)"e”

n(r , , dr’
+—f e 2" (1-ef"P)HI(27)—, (10
2/, "

that a site contains a particle is

p(1)=1-G4(7)
2= 7(1-2pg)ef”

-2

!

o ’ ! d
—%f e 27 (1-ef ) (20 ). (11
0 T

It is often more convenient to assume a low initial density
of particles, and work in the continuum limit. Letbe the

r{Iglttice spacing. Then, setting=na, G,(t)—G(x,t), and

=D/a? in Eq. (5), and taking the limila— 0, one obtains

éne diffusion equation

2

%G(x,t)zZD %G(x,t), (12
with the boundary conditions
G(OhH=1, (133
0=G(x,t)<1. (13b)
The particle concentration is obtained from
c(t)=|im%=—&G(x,t)|xzo. (14

a—0

Consider, for example, an initial concentratiop of ran-
domly placed particles. The initial condition is obtained from
Eq. (9), settingpy=—cpa and passing to the continuum limit:

G(x,0)=3+ e 2c0%, (15)
Solving for the concentration is then straightforward:

c(t)=coe22erfc(z), z=2cy\/2Dt. (16)

This is the known result, with its familiar long-time
asymptotic behavior,

, t—ooo,

c(t)~
® 87Dt

17

I1l. ANNIHILATION WITH INPUT

Let us now include the possibility of input, where empty
sites become spontaneously occupied at a prescribed rate.
We shall assume that the input of particles is homogeneous

(translation-invariant Various cases of input may be ana-
lyzed through the method of intervals within this restriction.

A. Input of single particles

Consider a random, homogeneous input of single particles
at constant rat& per unit space per unit time. If the input
site is already occupied, we assume that the particles react
immediately and the site becomes empty. In other words, the
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state of individual sites flipgfrom empty to occupied, and
vice versaat rateRa per unit time. This kind of input affects
the rate of change d5,,, thus

iG,
at

=nRa1-G,)—nRaG,=nRa1-2G,).
A input
(18)

The termnRa(1—G,) accounts for the increase @&, due
to the input of a particle to an-site interval, initially con-
taining anodd number of particles, while-nRagG, is the
(negative change inG, when a particle is input into an
initially even ninterval. Note that Eq(18) is valid for all

n=1, and so the input does not affect the boundary condition
(8). In the continuum limit, the change due to input is

dG/dt=Rx(1—-2G), so Eq.(12) becomes

2

iG(x,t) =2D iG(x,t) +R{1-2G(x,t)], (19
ot (?XZ

PHYSICAL REVIEW B3 066108
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(a) (b)

FIG. 2. Change ofG, with input of adjacent particle pairs:
Hatched rectangles represemtsegments with initially an even
(odd) number of particlesa) Input of a pair inside the interval does
not affect the parity(b) Input of the pair at the edge of the segment,
when just one particle lands inside, shifts the segment parity to odd
(even.

The conditionK, (0)=0 imposes discrete eigenvalues:
Nn=2(DR*)Ya,|,

wherea,, are the zeros of the Airy function. The relaxation
time to the stationary state, is then given by the minimal
eigenvalue,

7 =\mn=2(DR?»Ya,|=4.6762DR>)3. (22

subject to the same boundary conditions as without input.

The problem can be solved by substituting
K(x,t)=1-2G(x,t).
K(x,t) then satisfies

&2

J
—K(X,t)=2D — K(X,t) — 2RxK(x,t),
ot (9X2

K(0t)=—1.

Using the method of separation of variables, we write

K(x,t)=}§0 a,K, (x)e M,

where the eigenfunctions satisfy
aZ
2D — K, (%) = (2Rx= M) Ky (X).
X

Thus,

N

K, (X)=Ai - —2(DR2)1’3)’

R 1/3
5l -
where Ai() is the Airy function, a solution to the equation
Ai”(z)=zAi(z) [35]. The boundary conditioiK(0,t)=—1

implies Ko(0)=—1 andK,(0)=0 (A>0). The condition
Ko(0)=—1 vyields the steady-state solution,

1 Ai((R/D)Y3x)

and the steady-state concentration,
__ 9 _IAiT0) (R| ¥ -
Cs=~ % s(X)|x=o—m ) (21)

B. Input of adjacent particle pairs

Consider now homogeneous, random input of particle
pairs to adjacent sites: any two adjacent sites become occu-
pied at rateRa=r per unit time. As before, if a target site is
already occupied, the site becomes empty as a result of input.
The situation is analogous to that of input of single particles,
but the parity of an interval is now only affected when input
occurs at the interval’'s edge,.jevhen only one particle of
the pair falls right inside the intervals, is increased by
input at the edge of an oddinterval and decreased by input
at an even intervalsee Fig. 2 Thus, the rate of change of
G,, due to pair input is

J
(—Gn) =2[r(1-G,) —rG,]=2r(1-2G,).
ot AA |
input
(23)
In the continuum limit,G(x,t) must satisfy

2

iG(X,t) =2D a—G(X,t) +2r[1-2G(x,t)], (29
at NG

with the usual boundary conditio®(0,t)=1.
Again, we useK(x,t)=1-2G(x,t) to determine the so-
lution. K(x,t) must satisfy

9 9?
—K(x,t)=2D — K(x,t) —4rK(x,t),
ot ﬂxz
K(0)=—1.
ExpandingK (x,t) ==,K,(x)e M, as before, we find

(92
2D FK)\(X) =(4r = N)Ky(x),
X
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with Ky(0)=—1 andK,(0)=0 (A>0). This leads to the
stationary solution
5o f(z)
Gy(x) =7 +3e (DX (29 st

and the stationary concentration

1/2r 1/2
CSZE B . (26)

The relaxation spectrum is continuous:

_ . N—A4r |
A>4r; Ky (X)=sin VWX , (27 o

and the relaxation time is

zZ

. FIG. 3. The crossover functiof(z) of Eg. (33). Notice the
T "=Nmin=4r. (28 limiting behavior for small and large and the crossover aboat

~1 evident from the plot.

These results, along with the single-particle input results, are
in complete agreement with previous work byd2&17] and A 1 CoBi 41 <
Lushnikov[18]. Gs(x)=ciAi(ax) +cBi(ax)+3, x<y, (313

o aValyx, 1
C. Input of correlated pairs Gy(x)=cge” "V +3, x>y, (31b
~The method of intervals allows us to deal with more com-yhere Bi() is the independent, divergent solution to Airy’s
plicated input. As an example, we consider input of part"3'eequatior[35], a:(ZR/D)lB, andc, ,c,,Cs are constants ob-

pairs, separated by lattice spacings. This input aforre-  tained from the boundary conditions a0 andx=y. The
lated pairs interpolates between the two cases discussed $@eady-state concentration is

far: for m=0, the particle pairs are adjacent, just as in Sec.

[l B, while the case of Sec. Ill A is recovered as— o, |AI"(0)| [ 2R\ ¥ [ [ 2R\ 13
since then the input particles cannot possibly affect each Cfﬂ(ﬁ) [(3) Y}, (32
other and the correlation is lost.
Suppose that the particle pairs are deposited aRatper Where
unit time (per sitg. The rate of change d&, due to input is
i < >m: . . . .
now different forn=m andn>m ‘o JZBi(2) +Bi' (2) + \3zAi(2) + \3Ai' (2)
Z = . .y - .y
(iGn) —2Rna1-2G,), n=m, (293 \/ZBl(z)JrBl (Z)—\/§AI(Z)—\/§AI (2)
Jt A---A input \/E
—, z<1,
Jd —4 2 (33
EGn e =2R(m+1)a(1-2G,), n>m. 1 71
---A input

(29b
Equation(33) expresses the crossover behavior between in-

Again, Eq.(29a does not affect the usual boundary condi- put of single particles and adjacent particle pairs. Indeed,
tion Gy=1. Adding these contributions to E(p) and taking wheny—o (z—®), the particles are essentially uncorre-
the continuum limit, we obtain lated, and the steady state is the same as for single particles,
of Eqg. (21), but with 2R instead ofR. This is because the
d 92 input of pairs introduces particles at twice the rate of single
G eD=2D— 3G +2RA1-2G(x D], x=y, particles. The limit ofy—~0 (z—0) yields cs~(R/D)y,
(303 just as for adjacent particle paif&q. (26)]. The crossover
between the two regimes occurs aboR/D)*3y~1 (Fig.
P P 3).
—G(x,t)=2D ﬁe(x,t) +2Ry[1-2G(x,t)], x>V,

o D. Input proportional to some global propert
(30 - Input prop g property

We can also analyze input at a rate proportional to some
with the usual boundary conditioB(0,t)=1. Additionally,  global property of the system. Consider input of single par-
G(x,t) anddG(x,t)/dx are continuous at=y. ticles, as in Sec. lll A, but at a rate proportional to a func-

For simplicity, we analyze only the steady state. We findtional of G(x,t):
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R=R[G(x,1)]. which is the same as the DBARW except that the particles
do not diffuse. The DBARW is now commonly referred to as
Putting this rate into Eq(19) yields a nonlocal partial differ- the branching-annihilating walk with two offspring
ential equation forG(x,t), which is generally difficult to (n=2-BAW), but since we wish to distinguish between the
solve. However, the steady state may be obtained in the folProcesses with and without diffusion, we shall utilize Sud-
lowing manner. In the steady-state limit, the raky ~ bury’s nomenclature.

—R[G4(x)] is constant. This constant can be found by solv- _Consider the DBARW taking place on awsite chain,
ing with periodic boundary conditionéor an N-site ring. Be-

cause the ring is finiteGy is determined by the parity of the
Rs=R[G(X|Ry)], (34)  initial number of particles, and remains constant throughout
the process. The effect of diffusion @, has already been
whereG4(x|R) is the distribution given by Eq20), assum-  discussed, and is given by EdS) and(6):
ing constant rateR. Once the value oRg is known, the P
steady state distributiolGs(x|Rs), and steady-state concen- (—Gn) =2I'(G,-1—2G,+Gpyp), 1<n<N
tration, cg, follow. Notice that the same procedure applies at diff
for other kinds of input, with minor changes: for example
for input of adjacent particle pair§(x|R) is given by Eq.
(25) rather than Eq(20). d
An amusing example is input of single particles at a rate EGl . =2I'(1-2G;+G,), n=1.
proportional to a power of the particle concentration: diff

"and

Birth affectsG,, in a similar way to diffusion: the parity of an

R=R c(t) | * 35 n segment changes only when a particle just inside or just
00 (39 outside the segment gives birth. Thus,
. i . ) P
In this case, we can find directly from Eq.(21): (EGH) —20(G,_1-2G,+Gy.q), 1<n<N—1.
B RS 1/3 B |A| /(0)| birth
Cs=Y D/ Y2 Ai(0)”’ _For n=1, birth intq an empty site decreasBsg, while birth
into an occupied site increas€s. The two effects add up to
or
( i G ) 20(G,—Gy) 1
1(3— ) — = -G,), n=1.
S:( a &) (36) -t birth T
a D ’
c(0) Finally, forn=N-—1, birth from a particle at the inner edge

of the (N—1) segment is similar to the case of generibut
birth from a particle outside of the segment is different: be-
cause the lattice is aN ring, a particle outside of thelN
—1) segment gives birth towo particles inside it(one at
each edge and the parity does not change. Thus,

d
_C:_k103+ kZCD‘, kl"’D, kz"’Rolc(O)a. (37) (

The true meaning of Eq36), for different values ofe, is
revealed only from a careful analysis of the pertinent
effective-rate equatiofi]:

d

dt
_GN—l) :ZQ(GN—Z_GN—l)! n=N-1.

ot )
Equation(37) has a steady state similar to H86), but one birth

can clearly see that state is stable only dox 3. Fora>3,  Putting the contributions from diffusion and from birth to-
the solution is unstable; instead, the system flows to one afether, we get
the stable states=0 orc=<. A particularly intriguing case,

in which fluctuations not reflected in the mean-field analysis ¢
will surely play a central role, is that af=3. EGHZ2(F+Q)(Gn*1_ZGH+G“+1)’ l<n<N-1,

(383
IV. ANNIHILATION WITH SYMMETRIC BIRTH
J
We now treat the process of annihilatioky A— 0, with EG1=2F(1—261+ G,)+20(G,—Gy), n=1,

the addition of the backreactigh— 3A, where particles give (38b)
birth to two new particles at the adjacent sites to their left
and right, at raté€) (per particle, per unit time If birth takes J
place on a site that is already occupied, annihilation is im- EGN,1=2F(GN,2—ZGN,1+GN)
mediate and the site becomes empty. This process has been
analyzed by Sudbur}23], who named it the double branch- +20(Gn-2—Gn-1),
ing annihilating random walkDBARW). Sudbury[23] also
studied the double branching annihilating procé3BAP), n=N-1. (380
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For simplicity, we focus on the steady state, where time V. DISCUSSION
derivatives are zero(The transient behavior may be ana-
lyzed by methods similar to that of Sec.)llThe general
(steady-statesolution of Eq.(389 is G,,=An+ B, whereA
andB are constants. Their explicit value is determined from

In conclusion, the method of intervals enables one to ob-
tain exact results for a large class of diffusion-limited anni-
hilation models in one dimension. The usefulness of this ap-

the boundary condition&38b) and (380): proach sfremg from th.e. di.rect consideratiqn_ of parity
conservation in the annihilation process; annihilation con-

QA-TB=-T, (399  serves the number of particles modulo 2. Definigas the
probability thatn consecutive sites contain an even number
(N['+Q)A+T'B=—-TGy. (39p  of particles exploits this constraint. In some sense, this
method of intervals is a generalization of the method of

Thus, empty intervals used for coagulation proceddess|. A fur-
ther generalization exists that simultaneously models the

-Gy . Q1-Gy) g-state Potts model, coagulation, and annihilafidt).

Nl +2Q T NI +2Q The results of this paper can be summarized as follows.

. _ o The well-known resultc(t)zcoeSCSD‘erfc(\/Scoth) for

and the stationary particle density is diffusion-limited annihilation with an initial Poisson distri-

bution of particles in the real line was reproduced, and we
(I'+2)(1-Gy) (40) have obtained an analogous solution for the discrete case of
N[C+20 a linear lattice. We have studied the nontrivial steady-state
concentration resulting from particle input. In particular, it
When the initial number of particles is evé@y=1 and the  was shown that a smooth crossover occurs in the steady-state
system gravitates into its absorbing empty state, a state frogoncentration as the separation of input particle pairs in-
which it cannot evolve any further. If the initial number of creases from zero to infinity; as particle pair input crosses
particles is odd Gy=0), the system can never reach thegver to single-particle input, the concentration dependence
absorbing state. However, in this case the steady-state deghanges from R/D)Y® to (R/D)Y2. Our final example in-
sity is barely larger than I (for N large): the system comes yolved annihilation with the symmetric birth reactioh
as close to extinction as possible. This generalizes the result, 3A. The method of intervals allows one to fully examine
of Sudbury thaps=0 for the DBARW in infinite lattices.  the kinetics of this reaction scheme in finite ringed lattices.
Consider now the DBAP, which is the case of no diffu- As an example, we derived the exact nature of the steady-
sion,I'=0. In this case, Eq¥39) imply A=0, B arbitrary,  state solution for even and odd populations, with or without
or G,=const. Suppose that the initial number of particles isdiffusion.
infinite, so thatGy, is not definedbut, sinceG, is constant, The method of odd/even intervals introduced here for the
0<=Gy=1). Then, taking the limil"— 0 in Eq.(40), we find  case of annihilation could be extended along the same lines
0<ps=<3. This too agrees with Sudbury, who has shown thatas the method of empty intervals used for coagulation
any homogeneous, random initial distribution leadspto [2,3,5,36,37. This will be the subject of future work. For
=3, but other distributions lead to steady states withdd  example, the kinetic phase transition associated with revers-
<3. According to Sudbury, the possible steady states are thigle coagulationA+ A=A [36], might also have an echo in
borders of the product measures. Indeed, the border of,  A+A—0, A—3A, at least in the case of finite lattices, when
has constan®, : the condition that there be an even numberthere exists a nonempty steady state. Nonhomogeneous sys-
of borders in am segment is equivalent to having the sametems could be studied with the addition of one variable by
states at the edges of the segment in the origigaheasure. focusing onG,,(t), which is the probability that the interval
But the probability of this event i§,=p?+(1—p)?, inde-  between sites andm contains an even number of particles
pendent ofn. [2]. It might also be possible to obtain multiple-point corre-
An amusing case of the DBAP is when the initial numberlation functions by studying the joint probability that several
of particles is finite. In this cas& is known exactly. Thus, distinct intervals contain odd/even numbers of parti€85].
if the initial number of particles is odd@y=0), then the A natural question to ask is whether the interparticle dis-
I'—0 limit of Eq. (40) yields ps= 3, in agreement with Sud- tribution function (IPDF) for annihilation can be computed
bury. It is instructive to see how this steady state manifestby the odd/even interval method, as is the case for coagula-
itself in the case of finite rings. An example &f=6 is  tion (with the method of empty intervalsin the latter
shown in Appendix A. If the initial number of particles is case, the IPDF—the probability that the empty space
even Gy=1), Eq.(40) suggests thapb,=0, even for finite  between two particles is of lengtk—is given by p(x,t)
N. This is, however, not true, and it can be shol@8,26  =c(t)  6?E(x,t)/9x?, whereE(x,t) is the probability that
that the number of particles remains boundé&ar example, an interval of lengthx is empty [1]. Unfortunately,
two adjacent particles would propagate as a pair foreverg?G(x,t)/dx? does not convey analogous information. We
diffusing without change.In this case, the limil'—0 is  believe that the full hierarchy of multiple-point correlation
singular: even the tiniest amount of diffusion would land thefunctions may be obtained through the odd/even interval
system in the absorbing state, but the system can never beiethod, and since it provides a full description of the sys-
come emptywithout diffusion. tem, the IPDF could be obtained as well. While this might

ps=1-G;=1-A-B=
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1 2 TABLE I. G, for the configurations of DBAP in anN=6)

Q ring, shown in Fig. 4.

1 2 1 _1) (1 (o) g3 04 Os
(1— (T <7 <? G, 5/6 3/6 3/6 1/6 3/6

G Pl G, 4/6 4/6 2/6 4/6 0
0, G, 0, 4 5 G, 3/6 3/6 3/6 3/6 3/6
FIG. 4. Configurations of DBAP in anN=6) ring: Empty Ga 2/6 2/6 4/ 216 6/6
(solid) circles symbolize emptyoccupied sites. The arrows and Gs 16 3/6 3/6 5/6 3/6
numbers indicate relative transition rates between configurations.
work, in principle, the actual computation seems impractical. y=2m,— 23+ 21y,

It would be desirable to find a more straightforward way,
based on the odd/even interval method, to compute the IPDF. .
my=m3— 3T+ 375,
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where dots denote differentiation with respect to time. These
APPENDIX A: STEADY STATE OF DBAP IN N=6 RING e.quations. are linearly dependent, bgcause of the normaliza—

tion condition 3;7;=1. Supplementing the rate equations

Consider the DBAP on a ring 8 =6 sites, when there is with this condition, we find the steady state;= %, 7,

initially an odd number of particles. The system may assume= 15, m3=15, T4= 15, Ts=1is5. The G, may be computed
only one of five configurationsg; (i=1,2,...,5).These for each configuration, by averaging over all possible loca-
configurations and the transition rates between them are ikions of then segmentTable ). We can now compute the
lustrated in Fig. 4. From the figure, we see that the probabiliaverageG, by weighing the values in Table | with the;

ties m; of having stater; obey the rate equations found above(G,)=X;m;G,(a;). This procedure yields the
. expected resul{G,)=3 (n=1,2,...,5).Rings of other
TL=— Tt Ty, sizes may be analyzed in much the same way, though we
. found no obvious generalization beyond the simple fact that
my=1,— 3T+ 73, (G,) is alwayss.
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