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Method of intervals for the study of diffusion-limited annihilation, A¿A\0

Thomas O. Masser and Daniel ben-Avraham*
Physics Department and Clarkson Institute for Statistical Physics (CISP), Clarkson University, Potsdam, New York 13699-58

~Received 5 January 2001; published 17 May 2001!

We introduce a method of intervals for the analysis of diffusion-limited annihilation,A1A→0, on the line.
The method leads to manageable diffusion equations whose interpretation is intuitively clear. As an example,
we treat the following cases:~a! annihilation in the infinite line and in infinite~discrete! chains;~b! annihilation
with input of single particles, adjacent particle pairs, and particle pairs separated by a given distance;~c!
annihilation,A1A→0, along with the birth reactionA→3A, on finite rings, with and without diffusion.
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I. INTRODUCTION

Diffusion-limited reactions display a wide range of b
havior characteristic of nonequilibrium dynamics, such
self-organized criticality, pattern formation, and dynam
phase transitions. However, the exact description of this
havior can only be determined for the simplest react
schemes. Single-species annihilation,A1A→0, and coagu-
lation, A1A→A, are among the few examples of exac
solvable diffusion-limited reactions. The method of emp
intervals has provided many exact results concern
diffusion-limited coagulation@1–5#. Its advantage lies in the
fact that it leads to simple diffusion equations that are eas
solve, and whose interpretation is intuitively obvious. W
develop a similar method of intervals for the study
diffusion-limited annihilation reactions.

Diffusion-limited annihilation has been studied in a va
ety of forms. For the basic annihilation process, the ex
time-dependent concentration of particles has been de
mined for various initial distributions on the infinite one
dimensional lattice and the continuous real line@6–16#. The
inclusion of particle input in the reaction scheme allows fo
nontrivial steady-state concentration. Both input of adjac
particle pairs @17,18# and single-particle input@17,19,20#
have been studied. A nontrivial steady state may also oc
when a birth reaction is included. Annihilation with the sym
metric birth reaction,A→3A, has been studied for its impli
cations to interacting particle systems and universality th
ries @21–28#. Sudbury@23# referred to this reaction as th
double branching annihilating random walk~DBARW!.
Without diffusion, the process is known as the doub
branching annihilating process~DBAP!. We show how a
method of intervals, previously introduced in the literatu
@24,29–32#, may be used to model all of the above reactio
This powerful yet simple method yields insights that exte
beyond the known results@33#.

The rest of this paper is organized as follows. In Sec.
we introduce the method of intervals, as adapted for the
nihilation processA1A→0, and reproduce its well-known
kinetics. Section III deals with various cases of input. Inp
of particle pairs separated by a distancey is considered, and
the limiting cases of input of single particles (y→`) and
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adjacent particle pairs (y→0) are examined. We also discus
input at a rate proportional to a function of the global co
centration of particles. In Sec. IV, we present our results
DBARW and DBAP. We conclude in Sec. V with a discu
sion and open directions of research suggested by the
method of intervals.

II. THE METHOD OF ODD ÕEVEN INTERVALS

We now adapt the method of empty intervals, conceiv
originally for the analysis of diffusion-limited coalescenc
A1A→A, to reactions such as annihilation,A1A→0,
where the parity~the number of particles modulo 2! is con-
served. Consider the processA1A→0, taking place in a
one-dimensional lattice. The particles hop randomly to
nearest site on their right or left, at equal rateG, and annihi-
late immediately upon encounter. LetGn(t) be the probabil-
ity that an arbitrary segment ofn consecutive sites contain
an even number of particles, at timet. ~We assume, for the
moment, that the system is infinite and homogeneous.! A site
can be either empty or occupied by a single particle, so
probability that a site is occupied, i.e., the particle density

r~ t !512G1~ t !. ~1!

Since the reactionA1A→0 conserves parity, the only
way thatGn might change is when particles at the edge
the segment hop outside, or when particles just outside of
segment hop inside. To describe these events, we req
Fn(t), which is the probability that ann segment containing
an even number of particles is followed by the presence o
particle at the (n11)th site. This can be expressed in term
of Gn ~Fig. 1!:

2Fn~ t !5~12G1!1~Gn2Gn11!. ~2!

FIG. 1. Computation ofFn(t): Empty~solid! rectangles symbol-
ize n segments with an even~odd! number of particles. Empty
~solid! circles represent empty~occupied! sites.
©2001 The American Physical Society08-1
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Likewise, Hn(t), the probability that ann segment contain-
ing an odd number of particles is followed by a particle
the (n11)th site, is

2Hn~ t !5~12G1!2~Gn2Gn11!. ~3!

The evolution equation forGn is now readily obtained:

]

]t
Gn~ t !52G~Fn212Hn211Hn2Fn!. ~4!

The term proportional toFn21 on the right-hand side ex
presses the event that a particle at siten jumps out of the
segment, leaving an even number of particles in the rem
ing n21 sites~and hence in then segment!; Hn21 corre-
sponds to the same case, but when there are initially an e
number of particles in then segment@that is, an odd numbe
in the (n21) segment#; Hn andFn pertain to a particle jus
outside of then segment, at siten11, jumping in. The factor
of 2 accounts for events taking place atboth edges of the
segment, at equal rate. Using Eqs.~2! and ~3!, this becomes

]

]t
Gn~ t !52G~Gn2122Gn1Gn11!. ~5!

The case ofn51 requires a special equation, sinceG0 is
undefined. Taking into account all the waysG1 might
change, one finds

]

]t
G1~ t !52G~122G11G2!. ~6!

Thus, Eq.~5! may be understood to be valid for alln>1,
provided that one uses the boundary condition

G0~ t !51. ~7!

Additionally, since theGn areprobabilities, we have

0<Gn~ t !<1. ~8!

The initial distribution of particles determines the r
quired initial condition,Gn(0). Forexample, suppose that a
the start of the process each site is occupied randomly
independently of other sites, with probabilityr0. Then

Gn~0!5 1
2 1 1

2 ~122r0!n. ~9!

Equation~5! may be solved by standard techniques,
example by Laplace-transforming with respect to time,
ting an exponential solution to the resulting difference eq
tion, and finally inverting the Laplace-transformed soluti
@34#. With the boundary conditions~7! and~8!, and the natu-
ral initial condition ~9!, one obtains

Gn~t!5 1
2 1 1

2 ~122r0!nebt

1
n

2E0

t

e22t8~12ebt2bt8!I n~2t8!
dt8

t8
, ~10!
06610
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wheret52Gt, b54r0
2/(122r0), and I n( ) is the modified

Bessel function of ordern @35#. In particular, the probability
that a site contains a particle is

r~t!512G1~t!

5 1
2 2 1

2 ~122r0!ebt

2 1
2 E

0

t

e22t8~12ebt2bt8!I 1~2t8!
dt8

t8
. ~11!

It is often more convenient to assume a low initial dens
of particles, and work in the continuum limit. Leta be the
lattice spacing. Then, settingx5na, Gn(t)→G(x,t), and
G5D/a2 in Eq. ~5!, and taking the limita→0, one obtains
the diffusion equation

]

]t
G~x,t !52D

]2

]x2 G~x,t !, ~12!

with the boundary conditions

G~0,t!51, ~13a!

0<G~x,t !<1. ~13b!

The particle concentration is obtained from

c~ t !5 lim
a→0

r~ t !

a
52

]

]x
G~x,t !ux50 . ~14!

Consider, for example, an initial concentrationc0 of ran-
domly placed particles. The initial condition is obtained fro
Eq. ~9!, settingr05c0a and passing to the continuum limi

G~x,0!5 1
2 1 1

2 e22c0x. ~15!

Solving for the concentration is then straightforward:

c~ t !5c0ez2
erfc~z!, z52c0A2Dt. ~16!

This is the known result, with its familiar long-time
asymptotic behavior,

c~ t !;
1

A8pDt
, t→`. ~17!

III. ANNIHILATION WITH INPUT

Let us now include the possibility of input, where emp
sites become spontaneously occupied at a prescribed
We shall assume that the input of particles is homogene
~translation-invariant!. Various cases of input may be an
lyzed through the method of intervals within this restrictio

A. Input of single particles

Consider a random, homogeneous input of single partic
at constant rateR per unit space per unit time. If the inpu
site is already occupied, we assume that the particles r
immediately and the site becomes empty. In other words,
8-2
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state of individual sites flips~from empty to occupied, and
vice versa! at rateRa per unit time. This kind of input affects
the rate of change ofGn , thus

S ]Gn

]t D
A input

5nRa~12Gn!2nRaGn5nRa~122Gn!.

~18!

The termnRa(12Gn) accounts for the increase inGn due
to the input of a particle to ann-site interval, initially con-
taining anodd number of particles, while2nRaGn is the
~negative! change inGn when a particle is input into an
initially even ninterval. Note that Eq.~18! is valid for all
n>1, and so the input does not affect the boundary condi
~8!. In the continuum limit, the change due to input
]G/]t5Rx(122G), so Eq.~12! becomes

]

]t
G~x,t !52D

]2

]x2
G~x,t !1Rx@122G~x,t !#, ~19!

subject to the same boundary conditions as without inp
The problem can be solved by substituting

K~x,t !5122G~x,t !.

K(x,t) then satisfies

]

]t
K~x,t !52D

]2

]x2
K~x,t !22RxK~x,t !,

K~0,t !521.

Using the method of separation of variables, we write

K~x,t !5 (
l>0

alKl~x!e2lt,

where the eigenfunctions satisfy

2D
]2

]x2
Kl~x!5~2Rx2l!Kl~x!.

Thus,

Kl~x!5Ai S S R

D D 1/3

x2
l

2~DR2!1/3D ,

where Ai( ) is the Airy function, a solution to the equatio
Ai 9(z)5z Ai( z) @35#. The boundary conditionK(0,t)521
implies K0(0)521 andKl(0)50 (l.0). The condition
K0(0)521 yields the steady-state solution,

Gs~x!5
1

2
1

Ai „~R/D !1/3x…

2 Ai~0!
, ~20!

and the steady-state concentration,

cs52
]

]x
Gs~x!ux505

uAi 8~0!u
2 Ai~0! S R

D D 1/3

. ~21!
06610
n

t.

The conditionKl(0)50 imposes discrete eigenvalues:

ln52~DR2!1/3uanu,

wherean are the zeros of the Airy function. The relaxatio
time to the stationary state,t, is then given by the minima
eigenvalue,

t215lmin52~DR2!1/3ua1u54.6762~DR2!1/3. ~22!

B. Input of adjacent particle pairs

Consider now homogeneous, random input of parti
pairs to adjacent sites: any two adjacent sites become oc
pied at rateRa5r per unit time. As before, if a target site i
already occupied, the site becomes empty as a result of in
The situation is analogous to that of input of single particl
but the parity of an interval is now only affected when inp
occurs at the interval’s edge, ie˙., when only one particle of
the pair falls right inside the interval.Gn is increased by
input at the edge of an oddn interval and decreased by inpu
at an even interval~see Fig. 2!. Thus, the rate of change o
Gn due to pair input is

S ]

]t
GnD

AA input

52@r ~12Gn!2rGn#52r ~122Gn!.

~23!

In the continuum limit,G(x,t) must satisfy

]

]t
G~x,t !52D

]2

]x2
G~x,t !12r @122G~x,t !#, ~24!

with the usual boundary conditionG(0,t)51.
Again, we useK(x,t)5122G(x,t) to determine the so-

lution. K(x,t) must satisfy

]

]t
K~x,t !52D

]2

]x2
K~x,t !24rK ~x,t !,

K~0,t !521.

ExpandingK(x,t)5(lKl(x)e2lt, as before, we find

2D
]2

]x2
Kl~x!5~4r 2l!Kl~x!,

FIG. 2. Change ofGn with input of adjacent particle pairs
Hatched rectangles representn segments with initially an even
~odd! number of particles.~a! Input of a pair inside the interval doe
not affect the parity.~b! Input of the pair at the edge of the segmen
when just one particle lands inside, shifts the segment parity to
~even!.
8-3
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with K0(0)521 andKl(0)50 (l.0). This leads to the
stationary solution

Gs~x!5 1
2 1 1

2 e2A(2r /D)x ~25!

and the stationary concentration

cs5
1

2 S 2r

D D 1/2

. ~26!

The relaxation spectrum is continuous:

l.4r ; Kl~x!5sinSAl24r

2D
xD , ~27!

and the relaxation time is

t215lmin54r . ~28!

These results, along with the single-particle input results,
in complete agreement with previous work by Ra´cz @17# and
Lushnikov @18#.

C. Input of correlated pairs

The method of intervals allows us to deal with more co
plicated input. As an example, we consider input of parti
pairs, separated bym lattice spacings. This input ofcorre-
lated pairs interpolates between the two cases discusse
far: for m50, the particle pairs are adjacent, just as in S
III B, while the case of Sec. III A is recovered asm→`,
since then the input particles cannot possibly affect e
other and the correlation is lost.

Suppose that the particle pairs are deposited at rateRa per
unit time ~per site!. The rate of change ofGn due to input is
now different forn<m andn.m:

S ]

]t
GnD

A•••A input

52Rna~122Gn!, n<m, ~29a!

S ]

]t
GnD

A•••A input

52R~m11!a~122Gn!, n.m.

~29b!

Again, Eq.~29a! does not affect the usual boundary con
tion G051. Adding these contributions to Eq.~5! and taking
the continuum limit, we obtain

]

]t
G~x,t !52D

]2

]x2
G~x,t !12Rx@122G~x,t !#, x<y,

~30a!

]

]t
G~x,t !52D

]2

]x2
G~x,t !12Ry@122G~x,t !#, x.y,

~30b!

with the usual boundary conditionG(0,t)51. Additionally,
G(x,t) and]G(x,t)/]x are continuous atx5y.

For simplicity, we analyze only the steady state. We fi
06610
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e
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Gs~x!5c1Ai ~ax!1c2Bi~ax!1 1
2 , x<y, ~31a!

Gs~x!5c3e2Aa3y x1 1
2 , x.y, ~31b!

where Bi( ) is the independent, divergent solution to Airy
equation@35#, a5(2R/D)1/3, andc1 ,c2 ,c3 are constants ob
tained from the boundary conditions atx50 andx5y. The
steady-state concentration is

cs5
uAi 8~0!u
2 Ai~0! S 2R

D D 1/3

f F S 2R

D D 1/3

yG , ~32!

where

f ~z!5
AzBi~z!1Bi8~z!1A3zAi ~z!1A3Ai8~z!

AzBi~z!1Bi8~z!2A3zAi ~z!2A3Ai8~z!

→H Az

2
, z!1,

1, z@1.

~33!

Equation~33! expresses the crossover behavior between
put of single particles and adjacent particle pairs. Inde
when y→` (z→`), the particles are essentially uncorr
lated, and the steady state is the same as for single parti
of Eq. ~21!, but with 2R instead ofR. This is because the
input of pairs introduces particles at twice the rate of sin
particles. The limit ofy→0 (z→0) yields cs;A(R/D)y,
just as for adjacent particle pairs@Eq. ~26!#. The crossover
between the two regimes occurs about (R/D)1/3y;1 ~Fig.
3!.

D. Input proportional to some global property

We can also analyze input at a rate proportional to so
global property of the system. Consider input of single p
ticles, as in Sec. III A, but at a rate proportional to a fun
tional of G(x,t):

FIG. 3. The crossover functionf (z) of Eq. ~33!. Notice the
limiting behavior for small and largez and the crossover aboutz
'1 evident from the plot.
8-4
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METHOD OF INTERVALS FOR THE STUDY OF . . . PHYSICAL REVIEW E63 066108
R5R@G~x,t !#.

Putting this rate into Eq.~19! yields a nonlocal partial differ-
ential equation forG(x,t), which is generally difficult to
solve. However, the steady state may be obtained in the
lowing manner. In the steady-state limit, the rateRs
5R@Gs(x)# is constant. This constant can be found by so
ing

Rs5R@Gs~xuRs!#, ~34!

whereGs(xuR) is the distribution given by Eq.~20!, assum-
ing constant rateR. Once the value ofRs is known, the
steady state distribution,Gs(xuRs), and steady-state concen
tration, cs , follow. Notice that the same procedure appli
for other kinds of input, with minor changes: for examp
for input of adjacent particle pairs,Gs(xuR) is given by Eq.
~25! rather than Eq.~20!.

An amusing example is input of single particles at a r
proportional to a power of the particle concentration:

R5R0S c~ t !

c~0! D
a

. ~35!

In this case, we can findcs directly from Eq.~21!:

cs5gS Rs

D D 1/3

, g5
uAi 8~0!u
2 Ai~0!

,

or

cs5S g3

c~0!a

R0

D D 1/(32a)

. ~36!

The true meaning of Eq.~36!, for different values ofa, is
revealed only from a careful analysis of the pertine
effective-rate equation@1#:

d

dt
c52k1c31k2ca, k1;D, k2;R0 /c~0!a. ~37!

Equation~37! has a steady state similar to Eq.~36!, but one
can clearly see that state is stable only fora,3. For a.3,
the solution is unstable; instead, the system flows to on
the stable statesc50 or c5`. A particularly intriguing case,
in which fluctuations not reflected in the mean-field analy
will surely play a central role, is that ofa53.

IV. ANNIHILATION WITH SYMMETRIC BIRTH

We now treat the process of annihilation,A1A→0, with
the addition of the backreactionA→3A, where particles give
birth to two new particles at the adjacent sites to their
and right, at rateV ~per particle, per unit time!. If birth takes
place on a site that is already occupied, annihilation is
mediate and the site becomes empty. This process has
analyzed by Sudbury@23#, who named it the double branch
ing annihilating random walk~DBARW!. Sudbury@23# also
studied the double branching annihilating process~DBAP!,
06610
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which is the same as the DBARW except that the partic
do not diffuse. The DBARW is now commonly referred to
the branching-annihilating walk with two offsprin
(n52-BAW!, but since we wish to distinguish between th
processes with and without diffusion, we shall utilize Su
bury’s nomenclature.

Consider the DBARW taking place on anN-site chain,
with periodic boundary conditions~or an N-site ring!. Be-
cause the ring is finite,GN is determined by the parity of the
initial number of particles, and remains constant through
the process. The effect of diffusion onGn has already been
discussed, and is given by Eqs.~5! and ~6!:

S ]

]t
GnD

diff

52G~Gn2122Gn1Gn11!, 1,n,N

and

S ]

]t
G1D

diff

52G~122G11G2!, n51.

Birth affectsGn in a similar way to diffusion: the parity of an
n segment changes only when a particle just inside or
outside the segment gives birth. Thus,

S ]

]t
GnD

birth

52V~Gn2122Gn1Gn11!, 1,n,N21.

For n51, birth into an empty site decreasesG1, while birth
into an occupied site increasesG1. The two effects add up to

S ]

]t
G1D

birth

52V~G22G1!, n51.

Finally, for n5N21, birth from a particle at the inner edg
of the (N21) segment is similar to the case of genericn, but
birth from a particle outside of the segment is different: b
cause the lattice is anN ring, a particle outside of the (N
21) segment gives birth totwo particles inside it~one at
each edge!, and the parity does not change. Thus,

S ]

]t
GN21D

birth

52V~GN222GN21!, n5N21.

Putting the contributions from diffusion and from birth to
gether, we get

]

]t
Gn52~G1V!~Gn2122Gn1Gn11!, 1,n,N21,

~38a!

]

]t
G152G~122G11G2!12V~G22G1!, n51,

~38b!

]

]t
GN2152G~GN2222GN211GN!

12V~GN222GN21!,

n5N21. ~38c!
8-5
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For simplicity, we focus on the steady state, where ti
derivatives are zero.~The transient behavior may be an
lyzed by methods similar to that of Sec. II.! The general
~steady-state! solution of Eq.~38a! is Gn5An1B, whereA
andB are constants. Their explicit value is determined fro
the boundary conditions~38b! and ~38c!:

VA2GB52G, ~39a!

~NG1V!A1GB52GGN . ~39b!

Thus,

A52
G~12GN!

NG12V
, B512

V~12GN!

NG12V
,

and the stationary particle density is

rs512G1512A2B5
~G1V!~12GN!

NG12V
. ~40!

When the initial number of particles is even,GN51 and the
system gravitates into its absorbing empty state, a state f
which it cannot evolve any further. If the initial number o
particles is odd (GN50), the system can never reach t
absorbing state. However, in this case the steady-state
sity is barely larger than 1/N ~for N large!: the system comes
as close to extinction as possible. This generalizes the re
of Sudbury thatrs50 for the DBARW in infinite lattices.

Consider now the DBAP, which is the case of no diff
sion, G50. In this case, Eqs.~39! imply A50, B arbitrary,
or Gn5const. Suppose that the initial number of particles
infinite, so thatGN is not defined~but, sinceGn is constant,
0<GN<1). Then, taking the limitG→0 in Eq.~40!, we find
0<rs<

1
2 . This too agrees with Sudbury, who has shown t

any homogeneous, random initial distribution leads tors
5 1

2 , but other distributions lead to steady states with 0<rs
< 1

2 . According to Sudbury, the possible steady states are
borders of the product measuresnp . Indeed, the border ofnp
has constantGn : the condition that there be an even numb
of borders in ann segment is equivalent to having the sam
states at the edges of the segment in the originalnp measure.
But the probability of this event isGn5p21(12p)2, inde-
pendent ofn.

An amusing case of the DBAP is when the initial numb
of particles is finite. In this case,GN is known exactly. Thus,
if the initial number of particles is odd (GN50), then the
G→0 limit of Eq. ~40! yieldsrs5

1
2 , in agreement with Sud

bury. It is instructive to see how this steady state manife
itself in the case of finite rings. An example ofN56 is
shown in Appendix A. If the initial number of particles i
even (GN51), Eq. ~40! suggests thatrs50, even for finite
N. This is, however, not true, and it can be shown@23,26#
that the number of particles remains bounded.~For example,
two adjacent particles would propagate as a pair fore
diffusing without change.! In this case, the limitG→0 is
singular: even the tiniest amount of diffusion would land t
system in the absorbing state, but the system can neve
come emptywithout diffusion.
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V. DISCUSSION

In conclusion, the method of intervals enables one to
tain exact results for a large class of diffusion-limited an
hilation models in one dimension. The usefulness of this
proach stems from the direct consideration of par
conservation in the annihilation process; annihilation co
serves the number of particles modulo 2. DefiningGn as the
probability thatn consecutive sites contain an even numb
of particles exploits this constraint. In some sense, t
method of intervals is a generalization of the method
empty intervals used for coagulation processes@1–5#. A fur-
ther generalization exists that simultaneously models
q-state Potts model, coagulation, and annihilation@31#.

The results of this paper can be summarized as follo

The well-known result c(t)5c0e8c0
2Dterfc(A8c0

2Dt) for
diffusion-limited annihilation with an initial Poisson distri
bution of particles in the real line was reproduced, and
have obtained an analogous solution for the discrete cas
a linear lattice. We have studied the nontrivial steady-st
concentration resulting from particle input. In particular,
was shown that a smooth crossover occurs in the steady-
concentration as the separation of input particle pairs
creases from zero to infinity; as particle pair input cros
over to single-particle input, the concentration depende
changes from (R/D)1/3 to (R/D)1/2. Our final example in-
volved annihilation with the symmetric birth reactionA
→3A. The method of intervals allows one to fully examin
the kinetics of this reaction scheme in finite ringed lattic
As an example, we derived the exact nature of the stea
state solution for even and odd populations, with or witho
diffusion.

The method of odd/even intervals introduced here for
case of annihilation could be extended along the same l
as the method of empty intervals used for coagulat
@2,3,5,36,37#. This will be the subject of future work. Fo
example, the kinetic phase transition associated with rev
ible coagulation,A1A
A @36#, might also have an echo in
A1A→0, A→3A, at least in the case of finite lattices, whe
there exists a nonempty steady state. Nonhomogeneous
tems could be studied with the addition of one variable
focusing onGnm(t), which is the probability that the interva
between sitesn andm contains an even number of particle
@2#. It might also be possible to obtain multiple-point corr
lation functions by studying the joint probability that sever
distinct intervals contain odd/even numbers of particles@3,5#.

A natural question to ask is whether the interparticle d
tribution function ~IPDF! for annihilation can be compute
by the odd/even interval method, as is the case for coag
tion ~with the method of empty intervals!. In the latter
case, the IPDF—the probability that the empty spa
between two particles is of lengthx—is given by p(x,t)
5c(t)21]2E(x,t)/]x2, whereE(x,t) is the probability that
an interval of length x is empty @1#. Unfortunately,
]2G(x,t)/]x2 does not convey analogous information. W
believe that the full hierarchy of multiple-point correlatio
functions may be obtained through the odd/even inter
method, and since it provides a full description of the s
tem, the IPDF could be obtained as well. While this mig
8-6



a
y
D

or

m

e
il

ese
liza-
s

ca-

we
hat

s

METHOD OF INTERVALS FOR THE STUDY OF . . . PHYSICAL REVIEW E63 066108
work, in principle, the actual computation seems impractic
It would be desirable to find a more straightforward wa
based on the odd/even interval method, to compute the IP
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APPENDIX A: STEADY STATE OF DBAP IN NÄ6 RING

Consider the DBAP on a ring ofN56 sites, when there is
initially an odd number of particles. The system may assu
only one of five configurations,s i ( i 51,2, . . . ,5).These
configurations and the transition rates between them ar
lustrated in Fig. 4. From the figure, we see that the probab
ties p i of having states i obey the rate equations

ṗ152p11p2 ,

ṗ25p123p21p3 ,

FIG. 4. Configurations of DBAP in an (N56) ring: Empty
~solid! circles symbolize empty~occupied! sites. The arrows and
numbers indicate relative transition rates between configuration
tat

tat

n.

06610
l.
,
F.

t,

e

il-
i-

ṗ352p222p312p4 ,

ṗ45p323p413p5 ,

ṗ55p423p5 ,

where dots denote differentiation with respect to time. Th
equations are linearly dependent, because of the norma
tion condition ( ip i51. Supplementing the rate equation
with this condition, we find the steady state:p15 3

16 , p2
5 3

16 , p35 6
16 , p45 3

16 , p55 1
16 . The Gn may be computed

for each configuration, by averaging over all possible lo
tions of then segment~Table I!. We can now compute the
averageGn by weighing the values in Table I with thep i
found above:̂ Gn&5( ip iGn(s i). This procedure yields the
expected result̂ Gn&5 1

2 (n51,2, . . . ,5). Rings of other
sizes may be analyzed in much the same way, though
found no obvious generalization beyond the simple fact t
^Gn& is always1

2 .

.

TABLE I. Gn for the configurations of DBAP in an (N56)
ring, shown in Fig. 4.

s1 s2 s3 s4 s5

G1 5/6 3/6 3/6 1/6 3/6
G2 4/6 4/6 2/6 4/6 0
G3 3/6 3/6 3/6 3/6 3/6
G4 2/6 2/6 4/6 2/6 6/6
G5 1/6 3/6 3/6 5/6 3/6
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